近日,來自蘭州大學的研究者們在Mol Cancer.雜誌上發表了題為“NK cells are never alone: crosstalk and communication in tumour microenvironments”的文章,該研究介紹了自然殺傷(NK)細胞與9種特殊TME(包括免疫、代謝、神經微環境、機械和微生物微環境)之間直接或間接串擾的新進展,總結了TME介導的NK細胞功能抑制機制,並強調了NK-TME串擾的潛在靶向治療。
發現腫瘤組織微環境NK細胞丟失表面膜突起,無法識別腫瘤細胞,失去了抗腫瘤功能。研究成果於2023年3月23日以:Tumors evade immune cytotoxicity by altering the surface topology of NK cells為題發表於 Nature Immunology 期刊,該研究揭示了一種腫瘤免疫逃逸的新機制,為基於NK細胞的腫瘤免疫治療提供了新思路與新靶標。
圖c. CRA-T大家都耳熟能詳,模仿CAR-T的CAR技術,已研發出CAR-engineered NK cell(如圖c所示),其原理亦是通過在NK細胞表面嵌合腫瘤特異性抗原受體,靶向識別並摧毀腫瘤細胞。體外實驗提示,其CAR-engineered NK cell展示出較ADCC更強的細胞毒作用,可能與CAR與腫瘤表面抗原結合較IgG-CD16展示出更強的親和力,目前CAR-engineered NK cell還處於研發階段,期待其在體內試驗中的療效。
NK 細胞平臺:off-and-shelf 治療。其獨特的NK 細胞不表達殺傷抑制受體。同時,NK細胞還攜帶顆粒酶和含有穿孔顆粒的較大有效負載,從而使其能針對多靶點提供致死酶有效負荷。另外,公司的生產專利、遞藥系統保證了NK細胞可以按需要商業化生長,就像“在袋子裡的活藥”。NK細胞的安全性已經在幾十個I期臨床(針對惡黑和實體瘤)中得到驗證,其安全性、活性和對生存期的延長已經證實。
免疫細胞治療屬於過繼性細胞治療(adoptive cell therapy, ACT),是指從患者體內取出具有抗癌能力的免疫細胞,在體外增殖修飾,再注射回患者體內,從而達到清除腫瘤細胞的作用。2022年1月,中國國家藥品監督管理局(National Medical Products Administration, NMPA)發佈了《藥品生產品質管制規範-細胞治療產品附錄(徵求意見稿)》,對細胞治療產品給予了明確的定義,並將細胞治療產品歸為藥品中的生物製品進行監管。根據治療的特異性,免疫細胞治療可分為特異性免疫細胞治療和非特異性免疫細胞治療,其中特異性免疫細胞治療包括嵌合抗原受體T細胞(chimeric antigen receptor T cells, CAR-T)治療、T細胞受體工程化T細胞(T cell receptor engineered T cells, TCR-T)治療、腫瘤浸潤淋巴細胞(tumor infiltrating lymphocytes, TIL)治療、嵌合抗原受體自然殺傷細胞(chimeric antigen receptor natural killer cells, CAR-NK)治療、樹突狀細胞(dendritic cells, DC)與細胞因數誘導的殺傷細胞(cytokine induced killer cells, CIK)聯合治療(即DC-CIK細胞治療)、調節性T細胞(regulatory T cells, Treg)治療等,非特異性免疫細胞治療包括淋巴因數啟動的殺傷細胞(lymphokine activated killer cells, LAK)治療、CIK細胞治療等。目前,CAR-T細胞治療技術是產業化步伐最快的免疫細胞治療技術,全球已有多個產品上市並進入臨床階段。1989年,以色列科學家Zelig Eshhar和他的團隊在研究T細胞受體的過程中發現B細胞產生的抗體和T細胞受體(T-cell receptor, TCR)結構相似,具有恒定區和可變區;他們將表達特定抗體的基因序列賦予細胞毒性T淋巴細胞(cytotoxic T lymphocytes, CTL),該特定抗體賦予了T細胞識別半抗原——2,4,6-三硝基苯基(2,4,6-trinitrophenyl, TNP)的能力,使得T細胞實現了抗原特異性的、非MHC限制的活化及其效應的增強[1]。由此,CAR技術正式步入歷史舞臺。
2013年,免疫細胞治療被Science評為年度十大科技突破之首。2017年8月,諾華CAR-T細胞治療藥物Kymriah獲得美國食品藥品監督管理局(Food and Drug Administration, FDA)批准,成為全球首個上市的CAR-T細胞治療產品。自此,免疫細胞治療領域多款產品陸續上市。雖然各類免疫細胞療法取得了突出成果,但依舊存在許多挑戰,例如尋找穩定的細胞來源、保證良好的安全性、限制與宿主免疫系統的不良反應以及提供更質優價廉的治療方案等。為了應對這些挑戰,2022年,學術界、政府和產業界在免疫細胞治療領域持續發力,在基礎研究、臨床研究和產業發展領域取得了一系列重要進展,有力推動了其臨床應用與產業化進程。
[1] Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A, 1989, 86: 10024-8
[2] Shy BR, Vykunta VS, Ha A, et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat Biotechnol, 2022, doi: 10.1038/s41587-022-01418-8
[3] Carnevale J, Shifrut E, Kale N, et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature, 2022, 609: 174-82
[4] Zhu I, Liu R, Garcia JM, et al. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell, 2022, 185: 1431-43
[5] Chang Y, Syahirah R, Wang X, et al. Engineering chimeric antigen receptor neutrophils from human pluripotent stem cells for targeted cancer immunotherapy. Cell Rep, 2022, 40: 111128
[6] Evgin L, Kottke T, Tonne J, et al. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci Transl Med, 2022, 14: eabn2231
[7] Chen C, Jing W, Chen Y, et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci Transl Med, 2022, 14: eabn1128
[8] Grosskopf AK, Labanieh L, Klysz DD, et al. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Sci Adv, 2022, 8: eabn8264
[9] Mackensen A, Müller F, Mougiakakos D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med, 2022, 28: 2124-32
[10] Freiwan A, Zoine JT, Crawford JC, et al. Engineering naturally occurring CD7-T cells for the immunotherapy of hematological malignancies. Blood, 2022, 140: 2684-96
[11] Zhang J, Hu Y, Yang J, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature, 2022, 609: 369-74
[12] Dekkers JF, Alieva M, Cleven A, et al. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat Biotechnol, 2022, doi: 10.1038/s41587-022-01397-w
[13] Wilson TL, Kim H, Chou CH, et al. Common trajectories of highly effective CD19-specific CAR T cells identified by endogenous T-cell receptor lineages. Cancer Discov, 2022, 12: 2098-119
[14] Romain G, Strati P, Rezvan A, Fathi M, et al. Multidimensional single-cell analysis identifies a role for CD2-CD58 interactions in clinical antitumor T cell responses. J Clin Invest, 2022, 132: e159402
[15] Liau LM, Ashkan K, Brem S, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a Phase 3 prospective externally controlled cohort trial. JAMA Oncol, 2022, doi:10.1001/jamaoncol.2022.5370
目前主流的NK細胞發育模型認為,NK細胞來源於骨髓中的CD34+CD45RA+造血祖細胞(HPCs)。在骨髓中,NK細胞由HPCs通過常見的淋巴樣祖細胞(CLPs)和NK細胞前體(NKPs)發展而來,然後遷移到外周血(Conventional NK cells, cNK細胞)或組織(tissue-resident NK cells, trNK細胞)。trNK細胞的分化發生在不同的組織部位,包括肺、胸腺、肝臟、子宮、皮膚、皮下脂肪組織和腎臟。在這些位點,NK細胞具有不同的表型特徵和功能,構成了NK細胞在不同成熟階段的迴圈。除了不同的組織類型外,即使在同一器官和同一組織中,NK細胞也具有高度的異質性。
[1]Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19(1):120. Published 2020 Aug 6. doi:10.1186/s12943-020-01238-x
[2]Heipertz EL, Zynda ER, Stav-Noraas TE, et al. Current Perspectives on “Off-The-Shelf” Allogeneic NK and CAR-NK Cell Therapies. Front Immunol. 2021;12:732135. Published 2021 Dec 1. doi:10.3389/fimmu.2021.732135
[3]Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy [published online ahead of print, 2022 May 30]. Nat Rev Immunol. 2022;10.1038/s41577-022-00732-1. doi:10.1038/s41577-022-00732-1
[4]Ran GH, Lin YQ, Tian L, et al. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther. 2022;7(1):205. Published 2022 Jun 29. doi:10.1038/s41392-022-01058-z
[5]Crinier A, Narni-Mancinelli E, Ugolini S, Vivier E. SnapShot: Natural Killer Cells. Cell. 2020;180(6):1280-1280.e1. doi:10.1016/j.cell.2020.02.029
[6]Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol. 2018;9:1869. Published 2018 Aug 13. doi:10.3389/fimmu.2018.01869
[7]Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov. 2022;21(8):559-577. doi:10.1038/s41573-022-00413-7